The role of borderline personality disorder traits in predicting longitudinal variability of major depressive symptoms among a sample of depressed adults

Abstract

Background: Major depressive disorder (MDD) and borderline personality disorder (BPD) often co-occur, with 20 % of adults with MDD meeting criteria for BPD. While MDD is typically diagnosed by symptoms persisting for several weeks, research suggests a dynamic pattern of symptom changes occurring over shorter durations. Given the diagnostic focus on affective states in MDD and BPD, with BPD characterized by instability, we expected heightened instability of MDD symptoms among depressed adults with BPD traits. The current study examined whether BPD symptoms predicted instability in depression symptoms, measured by ecological momentary assessments (EMAs).

Methods: The sample included 207 adults with MDD (76 % White, 82 % women) recruited from across the United States. At the start of the study, participants completed a battery of mental health screens including BPD severity and neuroticism. Participants completed EMAs tracking their depression symptoms three times a day over a 90-day period.

Results: Using self-report scores assessing borderline personality disorder (BPD) traits along with neuroticism scores and sociodemographic data, Bayesian and frequentist linear regression models consistently indicated that BPD severity was not associated with depression symptom change through time.

Limitations: Diagnostic sensitivity and specificity may be restricted by use of a self-report screening tool for capturing BPD severity. Additionally, this clinical sample of depressed adults lacks a comparison group to determine whether subclinical depressive symptoms present differently among individuals with BPD only.

Conclusions: The unexpected findings shed light on the interplay between these disorders, emphasizing the need for further research to understand their association.

Publication
Journal of Affective Disorders, (In press)
Damien Lekkas
Damien Lekkas
Data Scientist in Digital Mental Health

Research and development at the crossroads of mental health and technology. I use quantitative methods and AI to better understand psychopathology and behavior.